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Abstract

The data assimilation of stratospheric constituents is reviewed. The data assimilation
method is introduced, with particular consideration to its application to stratospheric
constituent measurements. Differences from meteorological data assimilation are out-
lined. Historically, two approaches have been used to carry out constituent assimi-
lation. One approach has carried constituent assimilation out as part of a numerical
weather prediction system; the other has carried it out in a standalone chemical model,
often with a more sophisticated representation of chemical processes. Whereas the
aim of the numerical weather prediction approach has been to improve weather fore-
casts, the aims of the chemical model approach have included providing chemical
forecasts and analyses of chemical constituents. A range of constituent assimilation
systems developed in these two areas is presented and strengths and weaknesses
discussed. The use of stratospheric constituent data assimilation to evaluate models,
observations and analyses, and to provide analyses of constituents, monitor ozone,
and make ozone forecasts is discussed. Finally, the current state of affairs is assessed,
future directions are discussed, and potential key drivers identified.

1 Introduction

In the 1990s, following years of development of meteorological data assimilation by
the Numerical Weather Prediction (NWP) community, the data assimilation methodol-
ogy (e.g. Kalnay, 2003) began to be applied to constituents (including aerosol), with a
strong focus on stratospheric ozone (Rood, 2003, 2005). Because of its comparatively
later application, constituent data assimilation is less mature than meteorological data
(henceforth NWP) assimilation. Nevertheless, there has been substantial progress
over the last 15 years, with the field evolving from initial efforts to test the methodology
to later efforts focusing on products for monitoring ozone and other constituents. More
recently, the production of ozone forecasts by a number of operational centres (e.g. the
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European Centre for Medium-range Weather Forecasts, ECMWF, Dethof, 2003) has
become routine. A notable feature of the application of the data assimilation method-
ology to stratospheric constituents has been the strong interaction between the NWP
and research communities, for example, in the EU-funded ASSET project (Lahoz et
al., 2007).

The main aims for assimilating ozone in the stratosphere include the development
of ozone and UV-forecasting capabilities; the need to monitor stratospheric ozone to
track the evolution of the stratospheric composition, mainly ozone and the gases that
destroy it (WMO, 2006), and assess compliance with the Montreal protocol; and the
need to evaluate the performance of instruments measuring ozone, especially those
providing long-term datasets (e.g. TOMS, GOME). The assimilation of ozone is also
important for technical reasons, including: the constraints ozone observations provide
on other constituents; the use of assimilation techniques to evaluate models and ozone
observations; the development of computer code to assimilate instrument radiances
sensitive to temperature and constituents; and the dynamical information provided by
ozone tracer distributions. Other stratospheric constituents besides ozone that are of
interest in this regard include H,O, N,O, CH,4, NO,, HNO3, CIO, BrO and aerosol (see
IGACO, 2004 for a more complete list).

In NWP, the main motivation for stratospheric constituent assimilation has been the
use of constituent information (in particular, water vapour and stratospheric ozone) to
improve the weather forecast. Historically, two approaches have been used for strato-
spheric constituent data assimilation. One has done assimilation as part of an NWP
system, used for operational weather forecasting; the other has done assimilation in a
standalone chemical model, either a chemical transport model (CTM) or a photochem-
ical box model, often with a more sophisticated representation of chemical processes.
Whereas the aim of the NWP approach has been to improve weather forecasts, the
aims of the chemical model approach are broader, and include providing chemical
forecasts and analyses of chemical constituents. In this review paper we will focus
on these two approaches and compare their strengths and weaknesses. lllustrative
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examples of each approach will be provided.

Table 1 provides a summary of stratospheric chemistry satellite observations for the
period 1978 to the present, that have been assimilated by NWP-based or chemical
model data assimilation systems. References describing the satellites/instruments are
provided.

The increasing maturity of data assimilation applied to stratospheric constituents,
and increasing use of the methodology by the scientific community, means that a re-
view of the field is timely. This review complements and builds on the recent review by
Rood (2005) by focusing on two approaches to assimilate stratospheric constituents,
NWP models and chemical models, providing examples and comparing and contrast-
ing the two approaches. It also takes into account recent developments concerning
in particular the use of data assimilation to evaluate the quality of observations and
models associated with ozone and water vapour. This review summarizes in one pub-
lication and puts in context these later results.

In the remaining sections of this review we discuss the elements of data assimila-
tion, with particular consideration to constituent data assimilation (Sect. 2). We then
discuss NWP-based approaches to data assimilation (Sect. 3) and chemical model
approaches to data assimilation (Sect. 4). We then discuss the evaluation of models,
observations and analyses (Sect. 5), and provide examples of applications of strato-
spheric constituent data assimilation (Sect. 6). Finally, we assess the current state of
affairs, discuss future directions and identify potential key drivers (Sect. 7). An Ap-
pendix lists acronyms used in this paper.

2 Elements of data assimilation

2.1 Introduction

Information on a system from observations based on geophysical measurements (the
observed system) is discrete in both space and time, so that there are “information
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gaps”. However, many applications require fully-specified geophysical fields. Thus, in-
formation needs to be mapped from measurement space (or observational space) to a
state space (or model space), such as a (discretized) numerical model representation
of the stratosphere. Although the models available for this mapping vary in their com-
plexity, a reasonable choice is a model that embodies the physical laws that govern the
observed system. Often, the model itself is said to embody the prior or background
information on the observed system; however, the prior information can also repre-
sent a prior or background estimate of the observed system. The data assimilation
(DA) problem aims to fill the “information gaps” in an optimal way; it can be stated, in
non-mathematical terms, as: Find the best representation of the state of an evolving
system given measurements made and prior information on the system, taking account
of errors in the measurements and the prior information.

The observation operator transforms from the model space to the measurement
space. It involves a mapping from geophysical inputs in model space (e.g. tempera-
tures, constituent amounts) to simulate an instrument measurement in measurement
space (e.g. radiances), taking into account the physics of the measurement and the
characteristics of the instrument. The DA problem involves a minimization of the misfit
between the model and the observations, and between the model and prior information
to produce a solution referred to as the analysis. The model operator, or the forward
model, maps the analysis forward in time to give a background state for a subsequent
assimilation cycle.

In general the number of measurements p is different (and usually smaller than) the
dimension n of the state space, making the DA problem ill-posed. Typically, prior or
background information is used to correct the ill-posed nature of the DA problem.

Although Bayesian estimation (Rodgers, 2000) defines a systematic and rigorous
approach to data assimilation, its full-scale implementation in constituent data assim-
ilation is impossible, chiefly due to the size of the problem. However, the Bayesian
approach is still useful in that it provides general guidelines for developing a DA sys-
tem and evaluating its results. Nevertheless, in any practical application it is necessary
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to make drastic simplifying assumptions to the DA algorithm. Two main lines have
been followed: (i) statistical linear estimation, and (ii) ensemble assimilation (Tala-
grand, 2003a).

Most standard DA algorithms, such as optimal interpolation, the Kalman filter and
smoother, and variational methods, are built on statistical linear estimation. Bouttier
and Courtier (1999) provide details of these algorithms.

Ensemble assimilation is a form of Monte-Carlo approximation which attempts to
estimate probability distribution functions (PDFs) from the spread of the ensemble.
In present applications (e.g. the Ensemble Kalman filter, Evensen, 2003), the size of
the analysed ensembles typically lies between a few tens to a few hundreds of model
states.

There are differences between NWP and stratospheric constituent data assimilation
that affect the way the assimilation is set up in the latter. These are:

— Stratospheric constituent data assimilation is less mature than NWP data assim-
ilation. An example of this concerns parametrizations of ozone chemistry due to
Cariolle and Déqué (1986). They have been used to assimilate ozone in the last
5 years or so, but it is only very recently that the performance of these schemes,
and their associated errors, has been assessed in the data assimilation context
(Geer et al., 2007).

— NWP is primarily an initial value problem. Stratospheric constituent data as-
similation is commonly posed as an initial value problem, but sources and
sinks may need to be considered.

— Improvements in NWP can be achieved by more accurate specification of dy-
namical variables such as temperature, winds and humidity. For stratospheric
constituents, a better forecast can be achieved both by a better description of
dynamical variables (and hence transport of the constituent), and by a better
description of sources and sinks (if applicable).
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— The time-scales relevant for NWP are order of days. For stratospheric chem-

istry, there is a very wide range of time-scales, from decades (e.g. for carbon
dioxide) to seconds for very short-lived species.

Chemical equation systems are stiff, i.e., they include reactions with rates
varying by several orders of magnitude. This requires the use of sophisticated
numerical integration schemes, called stiff solvers. Stiffness manifests itself
in strong error correlations between species, and can cause error covariance
matrices to become singular. Constituent data assimilation algorithms must
aim to account for these features.

The availability of useful satellite observations of stratospheric composition is
still relatively limited compared to the availability of observations of dynami-
cal variables for NWP. Retrieval algorithms for stratospheric constituents are,
however, reasonably well established, especially in comparison with the situ-
ation for tropospheric constituents.

The Global Observing System for NWP is more mature than for constituents.
This is reflected in that there are less operational instruments for constituents
than for NWP. Many satellite constituent observations are classed as “re-
search” or “pre-operational”’, which means that, compared to operational
NWP observations, they are usually not available in near-real-time; the re-
liability of data supply is often less robust; and observational errors may be
larger, or less well understood and characterized.

For NWP the numerical dimension of the problem is extremely large; the
typical dimension of current NWP models is of order 10’, while the number
of observations available over 24 hours is currently of order 10°-10. For
stratospheric constituents, the number of data assimilated is generally an or-
der of magnitude less than for NWP because fewer instruments are used,
with fewer soundings per instrument. In both cases, however, the large di-
mension of the problem causes practical difficulties, influencing the practical
implementation of assimilation systems.
9567

ACPD
7, 9561-9633, 2007

Stratospheric
constituent data
assimilation

W. A. Lahoz et al.

EG

c


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/9561/2007/acpd-7-9561-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/9561/2007/acpd-7-9561-2007-discussion.html
http://www.egu.eu

10

15

20

25

One important difference between NWP and constituent data assimilation is worth em-
phasizing. In principle, given accurate initial conditions, sources and sinks and accu-
rate dynamics, it would be possible to model constituent distributions many months
without constituent data assimilation. Furthermore, in stratospheric chemistry, many
situations can be modelled as a relaxation to an equilibrium state. This is very different
to the chaotic system involved in dynamical data assimilation.

This does not mean that constituent data assimilation is unnecessary. Constituent
data assimilation is needed to: (i) infer the constituent’s initial conditions (we can only
ever get these, imperfectly, from observations); (ii) correct for imperfectly known reac-
tion rates; (iii) correct for imperfectly modelled chemistry (e.g. not enough species, not
enough reactions described, or approximate parametrizations are needed); (iv) correct
for unknown source terms (e.g. tropospheric pollution, troposphere-stratosphere trans-
port); and (v) most importantly of all at the moment, correct for errors in constituent
transport, such as excessive Brewer-Dobson circulations in analysed wind fields, or
errors in temperature fields. Constituent data assimilation can thus be regarded as
a way of providing accurate initial conditions (point (i)), and as a way of confronting
models with observations in order to evaluate them and, in particular, correct model
bias (points (ii)—(v)). The latter objective shows that constituent data assimilation is a
different kind of problem compared to NWP data assimilation, where the goal is to get
accurate initial conditions.

2.2 Algorithms for constituent data assimilation

The representation of errors is fundamental to the formulation of constituent DA algo-
rithms. At its simplest one needs to consider the errors in the observations and the
errors in the background information. Following Ide et al. (1997), R is the observation
error covariance matrix. Typically, R is assumed to be diagonal; although this is not
always justified (e.g. different elements of a retrieved profile are likely to have corre-
lated errors). R includes the errors of the measurements themselves, E, and errors of
representativeness, F; R=E+F. F includes errors in the observation operator, and er-
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rors arising because the assimilation model does not fully resolve the scales measured
by the observations (Cohn, 1997). B is the background error covariance matrix. Its
off-diagonal elements determine how information is spread spatially from observation
locations. If the background errors of one variable are uncorrelated with any other vari-
able, then the analysis is termed univariate, but if the errors in different variables are
correlated, the analysis is termed multivariate. If B is multivariate, it can provide sta-
tistical links between dynamical variables, for example, geostrophic coupling, or links
between dynamical and chemical variables or different constituents. It is generally as-
sumed that B and R are uncorrelated.

In general, in data assimilation, errors (for the observations and the background
or model) are assumed to be Gaussian and unbiased. One strong argument for the
choice of Gaussian errors is that of all possible PDFs with given mean and variance,
the Gaussian distribution has maximum entropy (Rodgers, 2000). Another advantage
is that Gaussian PDFs are fully determined by their mean and variance, thus making
solution of the DA problem computationally practical.

Notwithstanding the assumption of unbiased errors, typically, there are biases be-
tween different observations types, and between the observations and the model.
These biases are spatially and temporally varying, and it is a major challenge to esti-
mate and correct them. The assumption of unbiased observations, commonly made
in DA, is rarely, if ever, true; various techniques have been developed to correct ob-
servations to remove biases (e.g. Dee and da Silva, 1998). Dee (2005) reviews the
treatment of biases in DA systems.

As described in Rood (2005), the data assimilation method adds an additional forcing
to the equations of the model. Because of this, there is no reason to expect that correct
geophysical/chemical balances are represented in an assimilated product. The prod-
ucts obtained from the model can be divided into primary and derived products. Pri-
mary products are quantities such as wind, temperature, water vapour and ozone, i.e.,
parameters most often explicitly modelled. Derived products are often functional rela-
tionships between the primary products, e.g., unobserved constituents. As discussed
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by Rood (2005), in a good DA system primary products tend to be well estimated. By
contrast, derived products are likely to be physically or chemically inconsistent because
of the forcing added by the DA method. Nevertheless, as shown later in this review, the
DA method can provide reasonable estimates of derived products such as unobserved
constituents. Molod et al. (1996) and Kistler et al. (2001) discuss the characteristics of
errors associated with primary and derived products in DA systems.

We now describe variational and sequential methods in the context of constituent
data assimilation, and then discuss some further aspects of the treatment of errors
and observations.

Variational methods. In the 3-d variational (3D-Var) method a minimization algo-
rithm is used to find a model state, x, that minimizes the misfit between x and the
background state x° , and also between x and the observations y. In 3D-Var, we seek
the minimum with respect to x of the penalty function, J:

J = %[x - x*TB[x - x"] + %[y ~ HOOT Ry - H()]. M

The first term on the right-hand-side (J,) quantifies the misfit to the background term
and the second term (J,)) is the misfit to the observations. Extra terms incorporating
dynamical constraints (J,,) are also added in some implementations of 3D-Var. The
observation operator H maps the model state x to the measurement space, where
y resides. If the observation operator is linear (written H), the penalty function, J, is
quadratic and is guaranteed to have a unique minimum. Among recent publications,
Bouttier and Courtier (1999) discuss the solution of Eq. (1).

Because of the large number of variables involved, variational DA schemes do not
perform the minimization of J in the model space but, instead, use a transformed or
control space. The elements of this control space are the control variables. A frequent
choice of control variable for constituents is the logarithm of a normalized mixing ratio —
this avoids unphysical negative values. It also means that errors can be specified as a
proportion of the background value, rather than absolute concentrations, which is often
more convenient since mixing ratios can vary by several orders of magnitude. However,
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such transformations can make the observation operator non-linear, for example if the
model state consists of local concentrations of a constituent while what is observed is
an integral of concentrations along an instrument line of sight.

B is generally built up by a series of control variable parameter and spatial transforms
(Parrish and Derber, 1992; Lorenc et al., 2004). The control variables are chosen so
that the structure of B is simplified, i.e., choosing control variables whose errors are
(assumed to be) uncorrelated leads to a block diagonal matrix. This approach opens up
the possibility of explicitly coupling constituent and dynamical fields where their errors
are correlated, for example tracer information could be used to correct wind fields.

The 3D-Var algorithm assumes that all observations are valid at the same time, even
though they are generally distributed over a time-window (of perhaps 6 h). In 3D-FGAT
(First Guess at the Appropriate Time), a variant of 3D-Var, the J, term is calculated by
comparing observations with the background at the relevant observation times.

4-dimensional variational (4D-Var) assimilation is a development of 3D-Var in which
the temporal dimension is included (e.g. Bouttier and Courtier, 1999). The minimiza-
tion is carried out over a time window that is typically 6 or 12 h, although longer time
windows have been used. The natural length of the time window for diurnally varying
species is 24 h. In 4D-Var, observations are used at their correct time. Experiments
at ECMWF suggest this is the main reason for the improved performance in 4D-Var,
as compared to 3D-Var (Fisher and Andersson, 2001). Experiments at the Met Office
also indicate improved forecast skill for 4D-Var compared to an equivalent 3D-Var con-
figuration (Rawlins et al., 2007). Thus, some of the benefit of 4D-Var can be obtained
using the 3D-FGAT approach.

4D-Var has two new features compared to 3D-Var. First, itincludes a model operator,
M, that carries out the evolution forward in time. The first derivative, or differential, of
M, M, is the tangent linear model (if M is linear, represented by M, its derivative is M).
The transpose of the tangent linear model operator, MT, integrates the adjoint variables
backward in time. Bouttier and Courtier (1999) discuss the conditions for the validity
of the tangent linear hypothesis, required to define the tangent linear model. Second,
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J can include an extra term in which the model errors associated with the model’s
temporal evolution are accounted for. For example, in the formulation of Zupanski
(1997) an analogous term involving Q' is included in J, where Q is the model error
covariance.

The properties of the adjoint method allow it to play two important roles in 4D-Var:
coupling different elements of the algorithm, and computing gradients associated with
the minimization of the penalty function (Talagrand, 2003b). The first property al-
lows unobserved regions to be constrained by observed regions, this property being
extended to unobserved species that chemically interact with modelled species that
are observed; the second property allows efficient computation of the gradient of the
penalty function.

Sequential methods. In the Kalman filter (KF), a recursive sequential algorithm
is applied to evolve a forecast, xf, and an analysis, x?, as well as their respective
error covariance matrices, P" and P?. The KF equations are (subscripts denote the
timestep):

X}, = M,_1X]_,; (2a)
Ph=M,_P2_M __+Q, (2b)
x2 = x' + K[y, - Hx]; (2¢)
K, = P, H][R, + H,PLHIT ™Y (2d)
P; = [1 - K,H, P}, (2€)

Equation (2a) represents the forecast of the model fields from time-step n-1 to n,
while (2b) calculates the forecast error covariance from the analysis error covariance
P? and the model error covariance Q. Equations (2c) and (2e) are the analysis steps,
using the Kalman gain defined in Eq. (2d). Q and P? are assumed to be uncorrelated
(e.g. Bouttier and Courtier, 1999). For optimality, all errors must be uncorrelated in
time.
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The Physical-space Statistical Analysis Scheme, PSAS (Cohn et al., 1998) consists
in numerically solving Eq. (2c) by first computing the term w=[R + HPfHT]’1[y —fo]
(we drop the subscript n) in observation space, and then multiplying w by PfHT, and
adding the result to x'. This approach can be used to perform the updating step of
the KF in Eq. (2¢). PSAS can also be considered as the dual of 3D-Var, in which the
analysis equation is solved in observation space, and then mapped to state space.
The observation-space approach of PSAS is cheaper than the conventional model-
space approach if the number of observations p is much smaller than the dimension
of the model state space n; this applies to many constituent assimilation applications.
However, the relatively large value of p in operational NWP systems means that the
PSAS approach is less competitive than 3D-Var.

The KF can be generalized to non-linear H and M operators, although in this case
neither the optimality of the analysis nor the equivalence with 4D-Var holds. The re-
sulting equations are known as the Extended Kalman filter (EKF, Bouttier and Courtier,
1999). The cost of the KF or EKF is much larger than that of 4D-Var, even with small
models. This is a consequence of the explicit calculation of P’, and necessary storage
costs. Consequently, development of KF techniques for constituent DA has tended to
focus on approximate methods.

The Ensemble Kalman filter, EnKF, approximates the EKF by using a Monte-Carlo
ensemble of short-range forecasts to estimate P’. The approximation becomes more
accurate as the ensemble size increases. Evensen (2003) provides a comprehensive
review of the theory and numerical implementation of the EnKF. Pham (2001) com-
pares the EnKF and the particle filter. Recent advances include the square-root filter
(Anderson, 2001) and local Ensemble Kalman filtering (Ott et al., 2004). To our knowl-
edge, the EnKF is not currently used for stratospheric constituent assimilation.

Treatment of errors. Many DA systems use the so-called NMC method (Parrish
and Derber, 1992) to estimate the background error covariance matrix B; this is based
on the premise that forecast errors are similar to the differences between pairs of fore-
casts that verify at the same time. Polavarapu et al. (2005a) implement a variation
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on the NMC method in which B is estimated from successive 6 h differences from an
extended model run. An alternative approach (Fisher, 2003) uses the spread from an
ensemble of DA systems to estimate B. To simplify the DA system and make it eas-
ier to assess the quality of observations, a simple approach is sometimes used with
chemical models. For example, Errera and Fonteyn (2001) assume a diagonal B with
constant values larger than the observation errors.

To account for anisotropic atmospheric flow, flow dependence can be included in
B (Riishgjgaard, 1998; Weaver and Courtier, 2001). Because anisotropy can im-
pact tracer distributions, a flow-dependent B is sometimes used for the assimilation
of stratospheric constituents: methane (Auger and Tangborn, 2004); ozone (Stajner et
al.,, 2001; Segers et al., 2005). In the Auger and Tangborn set-up, the error covari-
ances are evolved as a truncated set of wavelet coefficients; the truncation is carried
out in such a way that the resolution of the error covariance is reduced only in the zonal
direction, where methane gradients are smaller. In the étajner et al. set-up, the corre-
lation lengths are longer in the longitudinal than in the meridional direction, to match
the distribution of SBUV/2 and TOMS ozone observations. In the Segers et al. set-up,
the anisotropy is in all spatial directions, accounting for different correlation lengths for
ozone with respect to height, latitude and longitude.

Theoretical work by Cohn (1993) demonstrated that background errors evolve ac-
cording to advective dynamics. Swinbank et al. (2000) used this property to specify
background errors using a series of Lagrangian back trajectories ending at the analysis
time; the error correlations are specified in terms of the distance between trajectories
24 h earlier, so reflecting anisotropy developed over the previous day. Recent work by
|. Stajner and colleagues at the Global Modeling Assimilation Office (GMAO) (I. Stajner,
personal communication, 2006) has developed the technique further and demonstrated
small improvements in the areas not strongly constrained by observations or chemistry:
lower stratosphere, near polar night, and troposphere. Another approach used is to im-
plement a flow-dependent B based on the conservation properties of potential vorticity
(Fierli et al., 2002).
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Error covariance matrices in KF methods are parametrized in constituent DA to re-
duce cost; this approach to approximate the KF is referred to variously as the reduced,
suboptimal or modified Kalman filter. P’ can be constructed by computing the diago-
nal elements and parametrizing the off-diagonal elements using adjustable parameters
for the correlation lengths (Ménard et al., 2000; Ménard and Chang, 2000; Khattatov
et al., 2000). Q can be specified by assuming that diagonal elements are proportional
to the modelled field itself; they are used to update the diagonal elements of P’. This
approach results in substantial savings, and allows the off-diagonal elements to be
computed using a simple relation.

In both KF methods and 4D-Var, all model fields (dynamical and chemical) are im-
plicitly coupled via the model operator M. This coupling is irrespective of whether the
background error B (or forecast error P’ ) is formulated in a multivariate or univariate
manner. In DA schemes the ozone control variable is often univariate (Errera and
Fonteyn, 2001; Struthers et al., 2002), but it is still possible for constituent data to af-
fect dynamical fields via M in 4D-Var and KF methods, although the coupling may be
weak.

Treatment of observations. Observations are commonly divided into conventional
observations (e.g. ground-based measurements and radiosondes) and satellite obser-
vations. Whereas conventional observations are often synoptic, meaning that all ob-
servations are taken at the same time, most observations of stratospheric constituents
are from satellites, and are asynoptic. Itis common in NWP (and relevant to constituent
data assimilation) to reduce the amount of satellite data prior to assimilation. This pro-
cess is called thinning and is done for two main reasons: to reduce computational
cost and to ensure the density of data assimilated is consistent with the model length
scales. The thinning of satellite observations also has the effect of reducing the spatial
correlation in observation errors.

Satellites do not measure directly constituents; instead they measure photon counts
(level 0 data). Radiative transfer algorithms then transform level 0 data into radiances
(level 1 data). Subsequently, using inverse modelling techniques (Rodgers, 2000),
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height-resolved data or total column data of geophysical quantities (level 2 data) are
inferred from level 1 data. Level 2 data are often termed retrievals. A recent develop-
ment in inferring constituent retrievals has been the use of tomographic techniques to
get a 2-D slice of the atmosphere, as opposed to the 1-D column provided by earlier
methods (Carlotti et al. 2001).

Generally, constituent data are assimilated as retrievals. A recent development in
the assimilation of constituents has been the assimilation of radiances sensitive to hu-
midity and ozone from limb-sounding instruments measuring in the infrared (Bormann
et al., 2005, 2007; Bormann and Healy, 2006; Bormann and Thépaut, 2006). Other ef-
forts involving the assimilation of radiances sensitive to ozone include the use of HIRS
channel 9 radiances at the Met Office (Jackson and Saunders, 2002; Jackson 2004),
and the use of SBUV/2 radiances at the GMAO (Mduller et al., 2004).

3 NWP-based approaches
3.1 Introduction

An NWP model is a complex numerical model designed to simulate the evolution of the
atmospheric state over the length of a weather forecast (typically for a few hours up to
two weeks into the future). The dynamical core of the model is concerned with solving
the Navier-Stokes equations (or an approximation thereto) that govern the evolution
of atmospheric winds and mass fields. The equations are typically solved using finite
difference or spectral methods. Numerical models include parametrizations of a range
of atmospheric physical processes, including the formation of clouds, production of
rainfall, interactions of the flow with orography and radiative transfer processes, and,
increasingly, chemistry.

There is a strong common heritage linking NWP models with general circulation
models (GCMs) used for global climate simulations (e.g. Trenberth, 1992). In some
cases, the same basic model is run in different configurations for both NWP and cli-
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mate simulations (e.g. the Met Office Unified Model; Davies et al., 2005). The most
complex atmospheric GCMs are coupled with sophisticated models of the ocean and
land surface, to form Earth System Models.

Examples of NWP models used for constituent data assimilation include the Na-
tional Centers Environmental Prediction, NCEP, system (see later); the ECMWF model,
where ozone has been assimilated for analyses and forecasts (Dethof, 2003) and re-
analyses (Dethof and HoIm, 2004), and where research has been done on the assimi-
lation of limb infrared radiances sensitive to 0zone and humidity (Bormann et al., 2005,
2007; Bormann and Healy, 2006; Bormann and Thépaut, 2007); and the Met Office
model, where ozone has been assimilated for research (Jackson and Saunders, 2002;
Struthers et al., 2002; Jackson, 2004, 2007; Lahoz et al., 2005, 2007; Geer et al.,
20064, b, 2007). Polavarapu et al. (2005a, b), using the Canadian middle atmosphere
model, discuss the role of dynamics on analysed stratospheric constituents, including
ozone. The other main stratospheric constituent that has been assimilated into NWP
models is water vapour (e.g. Lahoz et al., 2007). Table 2 provides a summary of se-
lected data assimilation experiments based on NWP models and GCMs.

Hereafter we discuss the assimilation of stratospheric water vapour, and the strato-
spheric constituent that has received most attention over the past decade, ozone
(Rood, 2003, 2005).

3.2 Assimilation of humidity

Water vapour is assimilated in the troposphere by NWP centres, but only now is it
starting to be assimilated in the stratosphere. This is chiefly due to its important role
in the radiation budget of the atmosphere, especially in the upper troposphere/lower
stratosphere (UTLS) region, because it provides information on the atmospheric circu-
lation, because it is a source of HO, (=OH+HO,, involved in the catalytic destruction
of ozone), and because it is a constituent of the Polar Stratospheric Clouds (PSCs)
involved in polar ozone loss (Dessler, 2000).

In this section, we highlight some of the key issues concerning the assimilation of
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stratospheric water vapour. First, the stratosphere is very dry; while condensation
of water vapour is commonplace in the troposphere, clouds (PSCs) only form in the
stratosphere in the polar night, where extremely cold temperatures occur. Throughout
the troposphere and the stratosphere, the water vapour mixing ratio varies by many
orders of magnitude, from a few percent (by mass) in the tropical lower troposphere
to a few parts per million (by mass or volume) in the stratosphere. In the stratosphere
itself, the water vapour mixing ratio varies little, from ~2 parts per million by volume
near the tropopause to ~8 parts per million by volume near the stratopause.

A second key issue is the available observations of water vapour. The primary source
of moisture measurements is the radiosonde network. Radiosondes carry sensors that
are primarily designed to measure the high relative humidity (RH) typical of the lower
and middle troposphere. Where the humidity is low and temperature cold, as in the
stratosphere, the measurements become less accurate (relatively, if not absolutely).
Thus, routine radiosonde humidity measurements are of little or no use in the strato-
sphere, even if the sondes reach that level. More recently, satellite data have become
more widely available, and are now used as an integral part of the operational assimi-
lation of moisture information (e.g. ATOVS and SSM/I). However, the operational nadir
soundings have relatively poor vertical resolution.

The large variation in humidity between the surface and the stratopause, together
with different priorities in the troposphere (description of precipitation and identification
of clouds) and the stratosphere (description of tracer distributions), means that it is
difficult to specify a control variable suitable for use throughout the domain of models
that span this region.

Dee and da Silva (2003) introduce a pseudo-relative humidity (RH*), defined by
scaling the mixing ratio g by the saturation mixing ratio of the background field. An ad-
vantage of this approach is that a univariate RH* analysis preserves g in the absence
of moisture observations. By contrast, using unmodified RH as a control variable im-
plies a change in scaling if the temperature is changed, leading to changes in g in the
absence of moisture observations. In the presence of multivariate observations, this
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approach produces analysed humidity values that are close to those produced by a RH
analysis.

In a parallel development, HoIm et al. (2002) introduced a normalized RH control
variable, in which RH is divided by (an approximation of) the background variability.
The new control variable has background errors that are more nearly Gaussian and
homogeneous. Relating the normalization term of the new control variable to anal-
ysed RH, as opposed to background RH, also removes most of the skewness in the
background errors seen for very dry or near-saturated air. Using normalized RH, the
assimilation scheme also takes better account of the large variability in the background
error covariance matrix. This should improve the interpretation of humidity data, and
the mapping of information from radiances into temperature and humidity fields.

Further developments are currently under way at a number of NWP centres
(e.g. ECMWEF, Met Office), with the aim of developing an approach to moisture as-
similation that performs well in both troposphere and stratosphere.

3.3 Assimilation of ozone

The main motivation for the inclusion of ozone data assimilation in operational NWP
has been to take better account of ozone (in particular stratospheric ozone) when as-
similating satellite radiance data, mainly from nadir sounding instruments. Radiance
assimilation has been shown to improve the overall skill of weather forecasts (Saun-
ders et al., 1999; McNally et al., 2006). Many of the channels used for atmospheric
temperature sounding are at least partially sensitive to ozone, so improvements in the
accuracy of ozone profiles can lead to more accurate temperature inversions.

At the same time, the assimilated ozone data can be used by the model radiation
scheme, potentially leading to better radiative forcing of the model. Model radiation
schemes take into account the absorption and emission of both short-wave (visible and
near-UV) and long-wave (infrared) radiation by a humber of atmospheric constituents.
In the stratosphere, ozone is the dominant contributor to radiative heating, but the
values are generally taken from ozone climatologies (e.g. Fortuin and Kelder, 1998).
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An estimate of the true ozone distribution is likely to improve these calculations.

At ECMWEF, ozone is already included in the forward modelling of satellite radiances.
Experiments at ECMWEF, using analysed ozone in heating rate calculations, found that
variations in ozone amounts of ~10% could result in changes in analysed UTLS tem-
peratures of 2 K—4 K (Cariolle and Morcrette, 2006). Model runs with comprehensive
chemistry and fully interactive ozone show significant temperature differences of up to
3K in the upper stratosphere and lower mesosphere, compared with those with clima-
tological ozone (Sassi et al., 2005). A prognostic ozone field allows the modelling of
feedbacks between radiation, chemistry and dynamics, and this is expected to improve
forecasts, especially over longer timescales. However, work by Morcrette (2003) sug-
gests that coupling of the analysed ozone with the radiation scheme does not always
bring improvement, and Cariolle and Morcrette (2006) state that in order to adequately
represent the ozone radiative heating in the UTLS, ozone profiles with a vertical resolu-
tion of ~1 km need to be assimilated. Recent experiments at the Met Office have shown
that the inclusion of ozone-radiation feedbacks leads to an increase in the quality of tro-
pospheric temperature, wind and geopotential height forecasts (Mathison et al., 2007).
However, these changes are small and as yet not well understood, and the greatest
impact of the ozone-radiation feedback is on analysed and forecast temperatures near
the stratopause.

An additional motivation for ozone assimilation is that the motion of ozone in the
atmosphere could give useful dynamical information. Daley (1995) pointed out the
feasibility of estimating the wind field from constituent observations, given sufficiently
dense, frequent and accurate measurements. Riishgjgaard (1996) demonstrated the
use of ozone measurements to reconstruct the flow field in a barotropic vorticity equa-
tion model. Peuch et al. (2000) demonstrated the dynamical impact of total ozone
column observations in Observing System Simulation Experiments (OSSEs) using a
4D-Var data assimilation system. However, the use of ozone data to infer dynamical
information is not without its problems. An inappropriately specified background error
covariance matrix can lead to unrealistic impacts of ozone measurements on the wind
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fields. So, in practice, many ozone assimilation systems treat ozone as a univariate
variable.

A further motivation for ozone assimilation is UV forecasting. Burrows et al. (1994)
set up a system for operational UV forecasts in Canada. First, a field of total col-
umn ozone over the northern hemisphere is calculated using climatological total ozone
column data, modified using regression relationships with a range of meteorological
forecast fields (including vorticity, temperature and geopotential height) in the upper
troposphere and stratosphere. Second, the total column ozone is corrected to fit ozone
measurements over Canada. Finally, the clear-sky UV index is calculated using the
solar zenith angle and day of the year. Other operational centres have developed sim-
ilar systems (Austin et al., 1994, for the Met Office). An operational ozone DA system
could be used to replace the first two steps of the procedure, with potentially better ac-
curacy. The Australian Bureau of Meteorology already does something similar (Lemus-
Deschamps et al., 2005), using a simplified analysis and forecast of TOVS total column
ozone. This system, and that used at NCEP (Long, 2003) have the benefit of using a
radiative transfer model to calculate the surface UV, rather than the empirical methods
used in Canada and the UK.

In the stratosphere, ozone has a life-time ranging from ~100 days (lower strato-
sphere) to less than 1 day (upper stratosphere) (Dessler, 2000). Except in the upper
stratosphere, these timescales for ozone are relatively long compared to the length of
a typical weather forecast, which is of the order of days. So, in that context, the full
treatment of chemical sources and sinks of ozone has not been a priority. Indeed,
the use of a complex representation of ozone chemistry in an NWP system would be
judged an unjustified overhead. Instead, the usual approach has been to implement
simplified representations of ozone production and loss processes.

In early data assimilation systems, any representation of chemistry was omitted and
ozone was treated as a passive tracer. Because ozone behaves as a passive tracer
in the lower stratosphere (except under ozone hole conditions), this approach can
provide useful information on the stratospheric ozone distribution (Polavarapu et al.,
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2005a). More recent developments have incorporated simple linear parametrizations
of the chemical sources and sinks of ozone, typically known as Cariolle schemes (Car-
iolle and Déqué, 1986; McLinden et al., 2000; McCormack et al., 2004; Cariolle and
Teyssedre, 2007).

In the Cariolle scheme, the rate of change of ozone due to photochemistry (C) is
written as a first-order Taylor series expansion:

C=a+by-x)+cT-Ty +d(D-D). (3)

The first term in Eq. (3), a, is the equilibrium production minus loss, at the appropriate
level and latitude. The second term accounts for differences between the current ozone
amount y and its equilibrium value, and the third for differences in the temperature
T. The last term allows for solar radiation by considering the effect of the total ozone
column @ above the point under consideration. The coefficients a, b, ¢ and d in Eq. (3),
as well as the equilibrium values, are derived from a full chemistry model (usually a 2-
D model), so the parametrized photochemistry is highly dependent on the particular
model used. Geer et al. (2007) compare results from a range of linear chemistry ozone
parametrizations and highlight some large differences.

The scheme described by Eq. (3) does not take into account heterogeneous ozone
chemistry, which is dominant under ozone hole conditions (Dessler, 2000). To remedy
this shortcoming, the approach expressed in Eq. (3) can be modified to include a cold
tracer to parametrize ozone loss due to heterogeneous processes (Hadjinicolau et al.,
1997; Eskes et al., 2003). The cold tracer approach is not the only means by which
heterogeneous ozone loss is represented in ozone data assimilation. Cariolle and
Teyssedre (2007) describe a version of the Cariolle scheme that represents this ozone
loss without using a cold tracer, and ECMWF uses a version with this approach, too
(Dethof, 2003).

The relaxation rate 7=—1/b can be used to quantify the importance of photochemistry
effects. As shown by Geer et al. (2006a, 2007), the values of T confirm that in the lower
stratosphere (7~100 days) the photochemistry could be neglected, but in the upper
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stratosphere (7~0.5 days) the photochemistry is very important. But, it follows that,
if the photochemical coefficients and equilibrium values are not realistic, the ozone
data will quickly relax to an incorrect value, ignoring information from observations.
In such circumstances, the parametrized chemistry scheme will seriously degrade the
assimilated ozone fields in the upper stratosphere, and it may be preferable to omit the
chemistry.

Results reported in the ASSET analysis intercomparison project (Geer et al., 2006a)
where ozone analyses from several GCMs and CTMs are compared for a fixed time
period, show that, for current ozone data assimilation systems, with good ozone ob-
servations and no chemistry one can get a good representation of the ozone field even
when the photochemistry timescales are fast. However, above 0.5hPa, where the
ozone diurnal cycle is no longer negligible, only analyses with a detailed representation
of mesospheric chemistry capture it. Finally, provided that there are no observational
gaps, the complexity of the chemical scheme tends to have little effect on the quality
of the ozone analyses. However, these results also show that observational gaps can
seriously degrade the ozone analyses. Arguably, in the upper stratosphere (fast chem-
ical time-scales), a better solution than omitting chemistry would be to bias correct the
Cariolle scheme (see, e.g., Coy et al., 2007).

The first implementation of an ozone assimilation system for operational NWP was
at the NCEP (Caplan et al., 1997; Derber et al., 1998). A univariate ozone assimila-
tion was included in the operational ECMWF 4D-Var system in April 2002, and was
also part of the 3D-Var system for the ERA-40 re-analysis (Dethof and HoIm, 2004;
Uppala et al., 2005). ECMWEF also currently provide analyses and forecasts of ozone
(Dethof, 2003). Of necessity, ozone assimilation systems for NWP are limited to using
measurements that are available close to real time. This effectively means data from
SBUV/2 (retrievals) and HIRS (channel 9 radiances), both carried by the NOAA polar-
orbiter satellites. However, ozone data from research satellites can also be available
in close to real time: ECMWF have assimilated operationally ozone profile data from
MIPAS and total column ozone data from GOME, and at the time of writing (May 2007)
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are assimilating total column ozone data from SCIAMACHY. TOMS total column ozone
data have been assimilated for re-analyses (Dethof and Holm, 2004). Some of these
satellite instruments give only restricted vertical coverage; for example, HIRS channel
9 is most sensitive to the lower-stratosphere 0zone maximum, while SBUV/2 retrievals
give some profile information above the ozone peak in the mid stratosphere.

Ozone assimilation has also been developed at the Met Office, first using the analysis
correction scheme (Connew, 1999; Struthers et al., 2002), and later 3D-Var (Jackson,
2004, 2007; Geer et al., 2006b) — see Fig. 1. Other NWP centres, e.g., GMAO and
the Royal Netherlands Meteorological Institute (KNMI) have taken the approach of de-
veloping an ozone analysis in a CTM driven by assimilated wind and temperature data
(see Sect. 4).

For non-operational systems (and, increasingly, operational systems such as that of
ECMWF) that assimilate research satellite data from platforms such as ESA’s Envisat,
the situation is better than with traditional operational satellite data (e.g. SBUV/2, HIRS
channel 9 radiances). In this case both nadir and limb sounders are used, with the latter
providing better vertical resolution because of their viewing geometry. There is recent
evidence that adding height-resolved ozone data improves ozone analyses in an NWP
system. In the intercomparison of ozone analyses described by Geer et al. (2006a), it
is shown that assimilation of height-resolved MIPAS ozone data improves the ECMWF
NWP ozone analyses. This improvement is attributed to the benefit coming from the
relatively high vertical resolution of MIPAS, and the fact that before this only limited
ozone data were assimilated (namely, SBUV/2 ozone layers and GOME total column
ozone). A similar improvement is seen in the Met Office system, where assimilation
of height-resolved EOS MLS ozone data reduces analyses errors compared to the
situation when only SBUV/2 ozone layers are assimilated (Jackson, 2007). These
results suggest a way forward toward improved use of ozone data in NWP systems.
Along these lines, benefit could be expected from the assimilation of height-resolved
ozone data from the Metop IASI instrument.

While ozone assimilation systems have focused almost exclusively on satellite data,
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it would also be possible to use ground based ozone measurements. The main rea-
sons why they are not generally used is first their scarcity and second that they have
not been routinely exchanged alongside other meteorological data. Ozonesondes are
expensive to make — much more expensive than radiosondes, themselves under eco-
nomic pressure. As a result, ozonesondes tend to be flown routinely once a week from
a very limited number of stations, plus during certain research campaigns, such as
MATCH (Streibel et al., 2006). While the scarcity of ground-based ozone data means
that it is not worthwhile assimilating them routinely, they are a very valuable data set
for the validation of ozone assimilation systems. There are a larger number of Dobson
measurements of total column ozone, but these have no profile information, as well as
being sparse compared to satellite measurements.

4 Chemical model approaches

For constituent assimilation, there are several good reasons for avoiding the use of
NWP models, and instead using what we refer to as the chemical model approach.
First, NWP models are complex and generally expensive in terms of computer re-
sources. Second, they tend to focus on the dynamics of the atmosphere, so that,
typically, only constituents that interact with the dynamics are represented. This is the
case for ozone and water vapour (see Sect. 3). In NWP models, chemistry is commonly
parametrized to simplify the system, so that in some cases (to be discussed later) this
set-up can be inappropriate.

If the goal is not to improve the weather forecast, other types of model are more ap-
propriate for constituent assimilation. In particular, (i) photochemical box models along
an air parcel trajectory, and (ii) three dimensional CTMs. In both these cases, the dy-
namical problem is simplified because the dynamical fields are pre-calculated from a
NWP-based system. In the first case, the trajectory and the atmospheric conditions
(temperature, pressure) along it are given and a photochemical box model is used to
calculate the evolution of the composition in the transported air parcel. In the second
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case, wind and temperature fields are prescribed and used to advect the constituents
in the model. The chemical scheme used by CTMs varies in complexity and depends
on the final application. If the assimilation system focuses on long-lived species (chem-
istry timescales >> transport timescales), e.g. methane in the stratosphere, chemistry
can be neglected. If the assimilation system focuses on ozone, where both chemistry
and transport can be important in the stratosphere, a parametrized chemical scheme
can be sufficient. If the assimilation system focuses on reactive, i.e., short-lived species
(chemistry timescales << transport timescales), e.g. NO,in the stratosphere, then ex-
plicit calculation of the chemical interactions is generally necessary. The first two cases
are cheaper in computer time than the third one. The cost of computer time is another
important factor to consider in constituent assimilation.

In general, there is more variability in the data assimilation set-up of chemical model
systems than in that for NWP model systems. This is also reflected in the number of
applications of the former. Currently, chemical model assimilation systems are used to:
(i) derive information on unobserved species (Errera and Fonteyn, 2001; Lary et al.,
2003); (ii) test chemical theories (Lary et al., 2003; Marchand et al., 2003); (iii) design
constituent measurement strategies (Khattatov et al., 2001); (iv) provide analyses of
tropospheric pollution (Elbern et al., 2007); (v) support the evaluation of satellite in-
struments (Marchand et al., 2004; Vigouroux et al., 2007); (vi) monitor stratospheric
ozone (Levelt et al., 1998; El Serafy et al., 2002; Eskes et al., 2003; étajner et al,,
2004; étajner and Wargan, 2004; Massart et al., 2004; Segers et al., 2005; Wargan et
al., 2005; Rosevall et al., 2007); (vii) monitor stratospheric chemical species other than
ozone, e.g., NO,, CH,, N,O, and aerosol (Khattatov et al., 2000; Ménard et al., 2000;
Ménard and Chang, 2000; Collins et al., 2001; Errera and Fonteyn, 2001; Fonteyn et
al., 2001; Chipperfield et al., 2002; EI Amraoui et al., 2004); and (viii) forecast strato-
spheric ozone: at KNMI (Eskes et al., 2002, 2005; El Serafy and Kelder, 2003), at the
GMAO (Riishgjgaard et al., 2000; Stajner et al., 2001), and at the Belgian Institute for
Space Aeronomy, BIRA-IASB (http://www.bascoe.oma.be/). BIRA-IASB also have pro-
vided forecasts of PSC surface area density, CIO, (=ClO+2*Cl,0,), N,O, HNO3 and
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CIONO,. Recent reviews of data assimilation using chemical models include those by
Lary (1999), Wang et al. (2001) and Khattatov (2003). Table 3 provides a summary of
selected chemical model data assimilation experiments.

To attain the broader goals of data assimilation using chemical models, several data
assimilation methods are used: successive correction; optimal interpolation (Ol), the
KF and variants thereof; variational methods (3D- and 4D-Var); and PSAS. By contrast,
most current NWP systems are based on variational methods.

In the following part of this section, we review the different methods and systems
used in constituent data assimilation with chemical models. We will also point out the
major differences between these systems and the systems based on NWP models.
For example, CTM-based systems tend to not consider radiance assimilation, which
is generally the case in operational NWP systems (This is not due to a fundamental
limitation of CTMs, which can theoretically be used with complicated observation op-
erators — see, e.g., Miller et al., 2004.). For CTM-based systems, the observations
are previously inverted to provide profiles or total column. In the case of profiles, the
observation operator is reduced to the spatial interpolation of the model values at the
observation location. In the case of columns, the model values are integrated over
the model layers before performing the spatial interpolation. A second important point
concerns the case where CTMs use a full photochemical scheme. In this case, the
number of constituent control variables is much greater than in an NWP system. To
give an example, a modern stratospheric CTM includes ~50 chemical species while
the current ECMWF NWP system includes only two constituents (humidity and ozone).

Three methods are commonly used in constituent data assimilation with chemical
models: 4D-Var, approximations to the Kalman Filter (generally involving parametriza-
tions of the error covariances), and PSAS (which can be viewed as an approach to
solve the Kalman filter, or as the dual of 3D- or 4D-Var, depending on whether the time
dimension is included). Each of these methods has advantages and disadvantages.
The feasibility of 4D-Var has been demonstrated in NWP systems. Its main advantage
is that it considers observations over a time window that is generally much longer than
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the model time step: typically 24 h for chemical models, while the CTM time step is
of the order of 30 min or less. This allows more observations to constrain the system
and, considering satellite coverage, increases the geographical area influenced by the
data. This, together with the non-diagonal nature of the adjoint operator which trans-
fers information from observed regions to unobserved regions, reduces the weight of
the background error covariance matrix in the final analysis. In the case of constituent
assimilation where a full photochemistry scheme is considered, the properties of the
adjoint operator allow unobserved species to be constrained by observed species. This
constraint can be expected when observed and unobserved species chemically inter-
act with a time scale of the order of the assimilation window or less. A special property
of the 4D-Var analysis is that in the middle of the assimilation window it uses all of
the observations simultaneously, not just those before the analysis. Because of this,
4D-Var is said to be a smoothing algorithm.

In contrast with the above advantages of 4D-Var, three weaknesses must be men-
tioned. First, its numerical cost is very high compared to approximate versions of the
KF, and to PSAS, so that, in general, its implementation requires a supercomputer.
Second, its formalism cannot determine the analysis error directly; rather it has to be
computed from the inverse of the Hessian matrix (again, this procedure is prohibitive
in both CPU and memory). Finally, in contrast with NWP 4D-Var systems, past as-
similation experiments using CTMs have not been based on the incremental method
(Bouttier and Courtier, 1999) and thus cannot take advantage of its benefits, e.g., solv-
ing the analysis at a reduced resolution, thereby reducing the computational cost.

The first assimilation study of constituent observations based on 4D-Var was pre-
sented by Fisher and Lary (1995). They used a trajectory box model with a reduced
stratospheric chemistry scheme involving O3, O, NO, NO, and N,Og. They assimi-
lated O5 and NO, data from the MLS and CLAES instruments on board NASA’s Upper
Atmosphere Research Satellite (UARS). They also performed an assimilation experi-
ment using synthetic, i.e., simulated, data that showed ozone observations were able
to constrain the other species. This study also introduced the concept of the influ-
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ence function which, with the help of the adjoint model, measures the influence of an
observed species at time f>1, on other modelled species at the initial time, t.

Errera and Fonteyn (2001) built a 4D-Var assimilation system for stratospheric chem-
ical observations. This system is based on a three-dimensional CTM with a detailed
chemical scheme including 41 species and 144 reactions. Observations are taken
from the CRISTA instrument. These include long-lived species (CH,, N,O and CFC-
11) and species with relatively shorter lifetimes (O3, HNO3, CIONO, and N,Og) in
comparison to the time-scale of the assimilation window (24 h). Comparison with inde-
pendent observations shows good agreement for observed species (e.g. 7% for ozone
against HALOE; less than 15% for HNO4 against ATMOS), and for NO, (=NO+NO,)
and HCI, two constituents that are not observed by CRISTA (in both cases less than
25% against HALOE). It was also shown that the HCI field is influenced by the assimi-
lation of CIONO, observations.

Because of the strong temperature-dependence of the chemistry of short-lived
species such as NO, and NOj, their variability could provide information on temper-
ature. One possible application is the use of temperature as a control variable in a
chemical DA system. Along these lines, the variational system built by Marchand et
al. (20083, 2004) has been used to extract temperature information from GOMOS NO4
observations (Lahoz et al., 2007).

The two other methods commonly used for constituent data assimilation are approxi-
mate versions of the KF, and PSAS. These methods are formulated so that the analyses
uncertainties are determined directly and can be propagated to the next assimilation
time step.

Approximate versions of the KF, and PSAS, are based on the hypothesis of model
linearity. Thus, the time window over which observations can be considered should
be chosen carefully to ensure that the linearity hypothesis is satisfied. Khattatov et
al. (1999) provided evidence that for a stratospheric photochemical box model, the
linear approximation essential to applicability of the EKF and 4D-Var is valid up to ~10
days. This behaviour was explained by noting that concentrations of many modelled
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short-lived constituents are largely determined by concentrations of a few relatively
long-lived constituents such as ozone, and parameters such as total active chlorine or
nitrogen.

Lyster et al. (1997) developed a Kalman filter system for a two-dimensional advec-
tion model on an isentropic surface. Although particular effort was made to optimize
the CPU time, such a system was not found to be practical due to the large computer
resources required. Ménard et al. (2000), using the same model as Lyster et al. (2000)
for the assimilation of CH, data, found that the standard KF formalism propagated the
analysis covariance matrix inaccurately, with rapid loss of variance and an increase in
the error correlations. To remedy this shortcoming, they formulated an alternative for-
malism to the KF system. This alternative formalism, described in companion papers
by Ménard et al. (2000) and Ménard and Chang (2000), estimates model parameters
using a robust method based on ,1/2 diagnostics which compares the observation minus
forecast (OmF) residuals with those calculated by the Kalman filter (see also Sect. 5).
The method is used to estimate three covariance parameters (representativeness error,
model error, and initial error). Because correlation length-scale parameters are found
to be insensitive to the ,1'2 diagnostics, they are estimated using a maximum-likelihood
method. The y* diagnostics have been used in other studies to estimate data assimila-
tion system parameters; statistics from the OmF time series are also used to estimate
these parameters.

Khattatov et al. (2000) used the ,1/2 diagnostics with a three-dimensional CTM that
assimilated ozone data. The multi-dimensional nature of the problem meant that some
simplification was required to comply with limitations in computer resources, both in
terms of CPU and memory. Khattatov et al. (2000) also showed that the value of
,1'2 primarily depends on the value of the error growth and not on the correlation dis-
tance. The same authors also found that the root-mean-square of the OmF differences
is mainly sensitive to the correlation length in the case where the spatial density of
observations is high.

The y? diagnostics methodology has been applied successfully in stratospheric data
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assimilation (e.g. Chipperfield et al., 2002; Fierli et al., 2002; Lary et al., 2003 and,
with some modifications, by EI Amraoui et al., 2004 and Baier et al., 2005). Chip-
perfield et al. (2002) also introduced a method to constrain unobserved long-lived
species (e.g. N,O), in which an observed long-lived species (e.g. CH,) is used to pre-
serve a compact tracer-tracer relationship between both constituents. Finally, Eskes
et al. (2003) developed a KF approach to produce near-real-time ozone analyses and
five-day forecasts. To comply with limited computer resources and the constraints of an
operational service, Eskes et al. introduced several approximations in the KF method.
For example, they used observation minus forecast (OmF) statistics to estimate the
horizontal error correlations, the observation errors and the forecast errors.

As can be seen from the above examples, approximate versions of Kalman filter
methods are very popular for constituent assimilation. This popularity is due to their
low demand for computer resources in comparison to 4D-Var. An alternative to approx-
imate versions of the KF is the PSAS method used at the GMAO. It has the advantage
that it solves the analysis in the observation space, which, for constituent assimilation,
is typically much smaller in size than the model space. It thus reduces the computer
resources needed. This approach is used by the Goddard Earth Observation System
(GEOS) ozone data assimilation system (étajner et al., 2001). This system, based on
a three-dimensional CTM with parametrized ozone chemistry, also uses the ,1/2 diag-
nostics to estimate the system parameters. The system has been operational since
1999, providing stratospheric ozone analyses using SBUV/2 and TOMS (étajner etal.,
2001). Other combinations of ozone datasets have been assimilated in experimental
versions of the GMAO system: SBUV/2 and POAM-III (étajner and Wargan, 2004),
SBUV/2 and MIPAS (Wargan et al., 2005); and SBUV/2, POAM-IIl and ILAS-II (Stajner
et al., 2006).

Finally, as well as considering the performance of the NWP-based and chemical
model approaches, one also needs to address the relative costs. While cost differences
depend on the complexity of different model components, one can still highlight some
key factors.
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First, it is significantly cheaper to use a transport model than a coupled chem-
istry/dynamics model, if dynamical fields are available already. In a test with the Met
Office Unified Model, the dynamics took ~25% of the total model time, while advection
of three tracers took 6% (A. Malcolm, personal communication, 2005). The advection of
a single tracer is relatively simple and cheap compared with the sophistication required
by the dynamics of the Met Office model. Similarly, the cost of the univariate assimila-
tion of a single constituent will be simpler and cheaper than the proportionate cost of a
dynamical variable that is treated multivariately. Furthermore, the smaller data volume
of constituent observations makes constituent data assimilation relatively cheaper than
data assimilation of dynamical variables (e.g. temperature, winds, humidity).

On the other hand, costs of the constituent DA include the cost of the required chem-
istry model. While this could be simple (or even non-existent for constituents such as
stratospheric methane), a complex chemical model is likely to be a major component
of a sophisticated chemical DA system. While we have outlined a range of cost con-
siderations, it is worth stressing that the costs are highly dependent on the type of DA
method, transport model, and chemistry employed.

5 Evaluation of models, observations and analyses

Both NWP-based and chemical model data assimilation approaches (see Sects. 3
and 4) are used to evaluate models and observations, in particular concerning ozone
(e.g. étajner et al., 2004; Geer et al., 2006a, b, 2007; Coy et al., 2007). Data assim-
ilation not only corrects weaknesses in models, but also identifies model deficiencies
such as biases (e.g. between model and observations; between different observations),
which as Rood (2005) states is likely the greatest current challenge in data assimilation.
In this Sect. we provide further details.

A crucial element of data assimilation is the evaluation of the quality of the obser-
vations, the model and the analyses, and the test of several assumptions built into
data assimilation algorithms, e.g., Gaussian errors; unbiased observations and mod-
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els. Several diagnostics have been developed to do this (Talagrand, 2003c). Broadly
speaking, these consist of: self-consistency tests, and independent tests. We first
discuss self-consistency and independent tests in general. We then provide illustra-
tive examples of how constituent data assimilation can be used to evaluate satellite
instruments.

5.1 Self-consistency tests

Self-consistency tests provide useful information for evaluating the quality of the data
assimilation ingredients and the assumptions built into assimilation algorithms. His-
tograms of OmA (observation minus analysis) and OmF (observation minus forecast)
differences are computed for a range of spatial and temporal scales to test whether the
observations, forecast and analysis fields, and their errors, are consistent with each
other. For example, the OmA histogram should be more peaked than that for OmF, as
the analyses should be closer to the assimilated observations than the forecast. Fur-
thermore, the OmF histogram should be Gaussian, if both the observation and forecast
are assumed to have Gaussian errors. Time averages of the standard deviation of OmA
can also be used to test whether the assimilation system is consistent with the concept
of the Best Linear Unbiased Estimate, BLUE (Talagrand, 2003a). Other tests check
whether there are biases between observation and forecast, or between observation
and analysis. Application of these tests is discussed in Errera and Fonteyn (2001),
étajner et al. (2001), Struthers et al. (2002) and Segers et al. (2005). See Fig. 2 for
an example. Tests for Gaussian errors can also include tests of skewness and kurtosis
(Geer et al. 2006b).

Time series of OmA and OmF differences test whether the observation, forecast and
analysis fields, and their errors, are consistent with each other. A well-behaved data as-
similation system will have time series with mean OmA and OmF values that are close
to zero and do not vary much over time. If this is not true, a bias between the model and
the data (or a subset of the data) is present. Also, if the standard deviation about the
mean of the OmA time series is larger than the observational error, this indicates that
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the system is not properly set up. For example, the observation and background error
covariance matrices, R and B, respectively, could be poorly characterized. Desroziers
et al. (2005) suggest a simple method to evaluate R and B separately; Chapnik et
al. (2006) describe a way of quantifying errors and biases of both model and observa-
tions in the process of tuning a DA scheme for internal consistency.

Time series of OmA and OmF differences can also be used to monitor the per-
formance of satellite instruments; changes in their values can indicate a change in
the instrument algorithm, or a degradation of the instrument. For example, Stajner et
al. (2004) uses the OmF time series provided by the GEOS ozone data assimilation
system to validate the NOAA-14 SBUV/2 retrieval algorithm. Furthermore, at the start
of a data assimilation experiment, it can take some time for the system to spin-up; this
spin-up time is shown by the time it takes for OmA or OmF differences to converge
towards a constant value (Struthers et al., 2002).

If the OmF differences have a Gaussian distribution, its inner product normalized by
its covariance is a random variable that has a ,1/2 distribution with p degrees of free-
dom, where p is the number of observations. This result can be used to test whether
the OmF differences are consistent with assumptions made in the assimilation algo-
rithm, and to monitor the observations (Ménard et al., 2000; Ménard and Chang, 2000;
Stajner et al., 2004).

If the data (observation and background) errors are Gaussian, the minimum of the
penalty function, J,,,, follows a ,1/2 distribution with p degrees of freedom, and must
be equal on average to p/2. This last result is also true if the errors are not Gaussian,
but the assimilation scheme remains linear. Thus, in these cases, J,,/p should on
average be 0.5 (Talagrand, 2003c). In practice, J,,;,/p is often significantly different
from 0.5. This discrepancy can arise from an incorrect estimate of B or R (mainly the
representativeness error in the case of R).

Several robust correlations between pairs of long-lived tracers have been observed in
the atmosphere (Plumb and Ko, 1992). A particular example is the correlation between
CH, and N,O (Chipperfield et al., 2002). When two or more long-lived tracers are
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assimilated, the quality of the analyses can be assessed through the consistency of
the tracer-tracer correlations.

5.2 Independent tests

These tests involve comparison of analyses with data that are independent from the
analyses, i.e., data not assimilated to provide the analyses. Independent datasets
used to evaluate ozone analyses include ozonesondes (Logan, 1999) or satellite data
which is not commonly assimilated (e.g. the UARS HALOE instrument, Russell et al.,
1993). Independent data can provide information on whether the analyses are realistic
and can help attribute biases to observations, forecast and analysis; note that self-
consistency tests cannot be used to perform this attribution. Estimating the bias in
the analyses by comparison against independent data is only possible when the error
characteristics of the latter are well known. Application of these tests is discussed in
Khattatov et al. (2000), Struthers et al. (2002) and Segers et al. (2005). See Fig. 3 for
an example.

When analyses are compared against independent data it is important to take ac-
count of the observation characteristics of each dataset. This can be accomplished by
making use of averaging kernel information, which accounts for the information con-
tent, including the vertical resolution, of the observations (Migliorini et al., 2004). This
is difficult in practice, as the averaging kernel information is not always readily supplied
by the measuring instrument specifications.

In general, comparison against independent data is much more significant than com-
parison against the assimilated observations. Thus, independent data are the ultimate
arbiter of the quality of analyses. In Sect. 6.1 we discuss the quality of humidity and
ozone analyses from NWP- and CTM-based assimilation systems, based on the inter-
comparison of analyses between themselves and against independent data. We also
mention briefly early efforts to carry out these intercomparisons for other stratospheric
constituents
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5.3 lllustrative examples

The use of constituent data assimilation to evaluate instruments is numerous. In the
two examples below, data assimilation has been used to evaluate two scientific instru-
ments onboard Envisat: GOMOS and MIPAS.

GOMOS is a stellar occultation instrument that measures, among other species,
stratospheric night-time profiles of O3, NO, and, for the first time, NO5. This last
species has a very short life-time. During the day-time, its concentration is close to
zero because it is photolysed in the presence of sunlight. During the night, its chem-
istry is very simple and strongly coupled to O3 and NO,. Marchand et al. (2004) have
assimilated GOMOS O5 and NO, in a photochemical box model using a variational
approach. Showing good agreement between NO5; from GOMOS and the analyses,
Marchand et al. (2004) validate the self-consistency of GOMOS O3, NO, and NOj
measurements (see Fig. 4). It is also found that these GOMOS measurements are
consistent with our current understanding of night-time NO5 chemistry.

Within the validation effort for MIPAS, Vigouroux et al. (2007) have compared MI-
PAS N,O and HNO3; with ground based FTIR measurements for 2003. They use a
co-location criterion of 1000 km around ground-based stations within a time interval
of £3h. In order to increase the number of co-locations, they also use MIPAS N,O
and HNOj; analyses produced by the Belgian Assimilation System for Chemical Ob-
servations from Envisat, BASCOE. The standard deviation and bias between the co-
located BASCOE analyses and FTIR observations are reduced from those between
the co-located MIPAS and FTIR observations. This paper also discusses under what
conditions these analyses can be considered a good proxy for MIPAS observations.
In the case of N,O, the agreement between BASCOE analyses and the MIPAS and
FTIR data is excellent. Comparison with FTIR shows a bias ranging from —5% to +1%,
and standard deviations ranging from 2% to 7%. Compared to the MIPAS random
errors (Raspollini et al., 2006), these values are not significant. BASCOE appears to
have more difficulty in producing proxies for MIPAS HNOj, profiles but the estimated
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6 Applications

In this section we provide examples of the application of data assimilation to evaluate
analyses of stratospheric constituents; monitor the stratosphere; and provide ozone
forecasts in near-real-time.

6.1 Evaluation of analyses

Objective evaluation of analyses can be obtained by the intercomparison of analy-
ses produced using different data assimilation systems. If the systems assimilate a
common observational dataset, differences between the analyses can be attributed to
differences in the models and/or the data assimilation system. Furthermore, by con-
fronting these analyses against others and against independent data (i.e., not assimi-
lated) it is possible to both gain an understanding of their strengths and weaknesses,
and to make new developments. Finally, these intercomparisons provide more infor-
mation (and faster) than if each participant assessed their own system independently.

In this section we use the analyses intercomparison approach to assess the ac-
curacies of humidity analyses in the stratosphere-mesosphere, Sect. 6.1.1 (Lahoz
et al., 2007), and the accuracy of ozone analyses in the stratosphere-mesosphere,
Sect. 6.1.2 (Geer et al. 2006a). Intercomparison of analyses of stratospheric con-
stituents other than humidity and ozone are currently underway. For example, Errera
et al. (2007) discusses the performance of NO, analyses using the BASCOE chemical
model and observations from MIPAS and GOMOS.

6.1.1 Accuracy of humidity analyses

The humidity analyses considered in some detail by Lahoz et al. (2007): BASCOE
(CTM-based), and ECMWF and Met Office (NWP-based), have varying accuracies
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that depend on the assimilation system, the altitude and the latitude. Figure 5 shows
the monthly mean zonal water vapour analyses for September 2003 for the ECMWF
and BASCOE systems.

The monthly mean analyses show good agreement with the UARS reference at-
mosphere for September (http://code916.gsfc.nasa.gov/Public/Analysis/UARS/urap/
home.html). A number of well-known features can be seen in the stratospheric analy-
ses from BASCOE and ECMWEF. These include a relatively dry region above the trop-
ical tropopause and dehydration of the Antarctic winter polar vortex (SPARC, 2000).
The role of the Brewer-Dobson circulation on the distribution of water vapour is re-
flected in the upward and poleward propagation of the dry air entering the strato-
sphere through the tropical tropopause. Methane oxidation is responsible for the rela-
tively moist upper stratosphere and lower mesosphere. The Brewer-Dobson circulation
transports this moist air downwards within the winter hemisphere polar vortex.

Between the tropopause (~100hPa) and 1 hPa, the zonal mean monthly analyses
for the BASCOE and ECMWEF systems are reasonably similar. The BASCOE analy-
ses show a drier UTLS region at most latitudes, whereas the ECMWF analyses show
a more distinct dry tropical tropopause region. Consequently, the vertical gradient in
specific humidity in the lower stratosphere is stronger in the BASCOE analyses. The
southern hemisphere polar vortex is drier in the BASCOE analyses. For levels above
1 hPa the zonal mean specific humidity fields vary quite considerably between the two
systems. In this region, the ECMWF analyses are ~2 ppmv (parts per million by vol-
ume) moister than the BASCOE analyses. The BASCOE analyses appear more real-
istic when compared to the UARS reference atmosphere. BASCOE analyses are ~5%
lower than MIPAS data in the lower mesosphere, but the corresponding ECMWF analy-
ses are ~10% higher. However, the ECMWF analyses are 25%—-30% too low compared
to the uppermost MIPAS layer at 0.2 hPa—0.1 hPa. It appears that the ECMWF anal-
yses aim to find a compromise between these conflicting biases, as we might expect
given that a vertical smoothing is imposed by the background error correlations. Most
of the differences between the two analyses in the upper stratosphere/mesosphere
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and lower stratosphere can be explained by the fact that BASCOE does not assimilate
any MIPAS data for levels below 95 hPa and above 0.2 hPa (data outside these regions
is model generated). Influences from the troposphere and mesosphere are therefore
excluded in the BASCOE model.

The Met Office has investigated the impact of varying the control variable in the
assimilation of MIPAS humidity data. The objective is to develop a humidity control
variable that has the desirable properties that it is usable in both the troposphere and
the stratosphere; it has approximately Gaussian background errors; that temperature
and humidity increments are decoupled; and that allows realistic vertical error corre-
lations. To achieve this, the Met Office have combined the ideas of Dee and da Silva
(2003) and Holm et al. (2002), and defined a normalized relative humidity variable.

Lahoz et al. (2007) describes three different experiments by the Met Office where the
humidity control variable is either relative humidity (RH), normalized RH or normalized
specific humidity. All three experiments show fairly reasonable specific humidity pro-
files for levels below 5 hPa. However, at higher levels the fit to the MIPAS observations
is less good, with the analyses being consistently too dry. The experiment with the nor-
malized specific humidity control variable has a more reasonable lower mesospheric
specific humidity, but is still too dry when compared to the MIPAS observations. These
results are still under study.

6.1.2 Accuracy of ozone analyses

The accuracy of ozone analyses from NWP- and CTM-based systems is discussed in
detail in the intercomparison by Geer et al. (2006a). It is shown that the best perform-
ing analyses are capable of producing very good agreement with ozonesonde, HALOE
and MIPAS ozone data. From the lower stratosphere to the lower mesosphere (100 hPa
to 0.5 hPa), these analyses show biases less than +£10% with respect to HALOE ozone
data and ozonesondes. Standard deviations can be less than 10% above 50 hPa and
less than 20% in the lower stratosphere (100 hPa to 50hPa). This shows that cur-
rent assimilation techniques are capable of producing ozone analyses that have good
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agreement with independent data (see Fig. 6).

The enhanced skill of the best performing analyses can usually be attributed to better
modelling of ozone. The worse performing systems could often be easily improved by
following similar modelling techniques. All of these results are contingent upon the
good quality of the assimilated ozone dataset: Dethof (2003) and Wargan et al. (2005)
have already shown the benefits of MIPAS ozone over operational observations such
as SBUV/2. The intercomparison finds few differences that can be attributed to the
assimilation technique or the model used (GCM or CTM). It would require focused
experiments, rather than an intercomparison, to reveal such differences. Overall, the
study by Geer et al. (2006a) shows that the first priority for ozone data assimilation
systems is to improve the modelling of ozone chemistry and transport.

The work of Geer et al. (2006a, b) on the quality of ozone analyses has highlighted
the importance of observational and model bias in DA. Besides providing information
on observational bias, DA can provide information on, and be affected by, model bias.
For example, Geer et al. (2006b), using the Met Office Unified Model, found that vertical
transport of ozone in the tropical pipe, and transport in the Brewer-Dobson circulation,
is much too fast as a result of known problems in the tracer transport scheme. This was
manifested in that ozone forecasts above the ozone peak (10 hPa) tended to be biased
high against the MIPAS values (negative OmF values), and ozone forecasts around the
ozone peak tended to be biased low against the MIPAS values (positive OmF values).

The Brewer-Dobson circulation is also degraded by problems with the assimilation
of dynamical variables (Douglass et al., 2003; Schoeberl et al., 2003; Tan et al., 2004).
This reflects that it is very hard for DA to handle slow processes, on timescales much
longer than typical assimilation cycles. Problems with stratospheric tracer transport are
seen in many DA systems (Oikonomou and O’Neill, 2006), and this remains a major
focus of investigation.

Work by Monge-Sanz et al. (2007) shows that ECMWF ERA interim re-analyses
(ECMWF 2007) can be used to provide realistic stratospheric transport over multi-
annual timescales with an off-line CTM; in particular, the CTM’s age of air agrees
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reasonably well with observations. The improvement, in comparison with forcing the
CTM with ERA-40 reanalyses or troposphere-stratosphere analyses from the Met Of-
fice, is attributed mainly to the use of 4D-Var (which uses observations at their correct
time) and an improved balance operator, together leading to more balanced flow and
reduced mixing in the subtropics. In addition, an improved implementation of the bias
correction of satellite radiances is thought to have helped reduce the analysed strength
of the Brewer-Dobson circulation.

Finally, several papers (Levelt et al., 1998; Chipperfield et al., 2002; Juckes, 20086, to
name a few) show analysed constituent datasets that are closer to independent data
than the assimilated observations or the simulated fields, thereby providing evidence
that the DA method can add value to constituent information, either from observations
or from a model. Jackson (2007) shows that assimilation of EOS MLS ozone data
reduces mean analyses errors in the lower stratosphere. Compared to control simula-
tions where no ozone data are assimilated, mean errors (evaluated against HALOE
ozone data) dropped by 5%—-25% in the Southern Hemisphere extra-tropics, and
by ~10% in the Northern Hemisphere extra-tropics; mean errors (evaluated against
ozonesondes) dropped by ~50% in the tropical UTLS.

Along these lines, Struthers et al. (2002) demonstrate that the combined assimilation
of UARS MLS ozone profiles and GOME total column ozone gives analysed constituent
datasets that are closer to independent data than either of the analyses derived from
the assimilation of UARS MLS ozone profiles, or of GOME total column ozone. Thus,
in this case, combined assimilation has added value to the single assimilation of these
ozone datasets. Note, however, that this is not always the case, as there could be in-
consistencies in the assimilation system, for instance in the treatment of biases (Rood,
2005). Thus, there is scope for improving the use of observations in constituent data
assimilation.
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6.2 Stratospheric Ozone Monitoring

Monitoring the stratosphere is done routinely by satellite instruments in order to track
the evolution of the stratospheric composition, mainly ozone and the gases that destroy
it (WMO, 2006). Currently, products from different data assimilation groups are used to
help this monitoring effort and assess protocols.

ECMWEF use their NWP operational system to monitor satellite 0zone data by passive
data assimilation, i.e., the ozone data are passed through the assimilation system and
evaluated, but are not allowed to affect the analyses. For example, Dethof (2004)
describes the monitoring of ozone profiles from the MIPAS and GOMOS instruments,
and total column ozone from the SCIAMACHY instrument. As of May 2007, ECMWF
monitor partial columns from SBUV/2 on NOAA-17 and NOAA-18, GOMOS ozone
profiles, and total column ozone from the 9.7 micron channel of SEVIRI on both MSG-
8 and MSG-9 (R. Dragani, personal communication, 2007). If the monitored data prove
satisfactory, they are moved to active assimilation into the ECMWF operational system,
and thus are allowed to affect the analyses. For example, it is expected that by mid
2007, SUBV/2 ozone data from NOAA-17 and NOAA-18 will be moved from passive
DA to active DA at ECMWEF.

Since 2000, KNMI produce near real time total ozone assimilation (Eskes et al.,
2003). This system is constrained by total ozone observations provided by a variety of
satellite instruments (GOME, SCIAMACHY or OMI, depending on the time period) and
has delivered global maps of total ozone since August 1995 (htip://www.temis.nl). This
database is being used to evaluate the change of total ozone since the 1960s (WMO,
2006).

Stratospheric constituent assimilation using a full chemistry model and 4D-Var is
underway at DLR and BIRA-IASB. In the framework of the ESA-funded PROMOTE
project, these two institutions will provide re-analyses of stratospheric ozone from 1992
(i.e., soon after the launch of the UARS satellite) to the present, using ozone data
from different sensors (see the Stratospheric Ozone Profile Record project, http://www.
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gse-promote.org for more details). In addition to ozone, they expect to provide analyses
of several parameters related to ozone chemistry: CIO,, NO,, PSCs, ozone depletion
rate and Cl, (total available chlorine). These re-analyses and analyses will be used by
international organizations such as SPARC (Stratospheric Processes And their Role
in Climate) in the framework of the Chemistry-Climate Model Validation (CCMVal) and
WMO-GAW (World Meteorological Organization - Global Atmospheric Watch) projects
to assist in the evaluation of compliance with the Montreal protocol.

6.3 Ozone forecasting

Ozone forecasts are useful for predicting high UV-flux events. They can be used to
warn populations near the Antarctic when the ozone hole moves above these areas.
They can also be used to plan observation campaigns. Ozone forecasts are operational
at ECMWEF since 2002 (Dethof, 2003), and operational at KNMI and GMAO since,
respectively, 2000 (Eskes et al., 2003) and 1999 (étajner et al., 2001).

The ECMWF products have been based on different ozone datasets, depending on
their availability. As of May 2007, ECMWF assimilate operationally total ozone columns
from SCIAMACHY and partial ozone columns from SBUV/2 on NOAA-16 (R. Dragani,
personal communication, 2007). The KNMI products are based on total column ozone
measurements from the ESA instruments GOME and SCIAMACHY, and the NASA in-
strument OMI. GMAO products are based on TOMS total column ozone and SBUV/2
partial column ozone measurements. The ECMWEF system is based on its NWP sys-
tem, and includes parametrized ozone chemistry. The KNMI and GMAO systems are
based on CTMs with parametrized ozone chemistry forced by off-line winds and tem-
perature from, respectively, the ECMWF and GEOS models. Ozone forecasts are pro-
duced using the wind and temperature forecasts from the ECMWF and GEOS models.

BIRA-IASB also set up an ozone forecasting service using the BASCOE system
(http://www.bascoe.oma.be). The system is based on a CTM with full chemistry and
a scheme that explicitly calculates the microphysics of PSCs. The constraining obser-
vations are MIPAS near real time ozone profiles as well as five other chemical species
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(NO,, HNO3, N,O, CH,4 and H,0). In addition to ozone ten-day forecasts, this service
also produced forecasts of CIO,, N,O, HNO; and CIONO, volume mixing ratio, and
PSC surface area density. This service was operational for one and a half years, and
ended in March 2004 when delivery of MIPAS near real time profiles was interrupted
due to problems with the MIPAS instrument. This difficulty with the MIPAS instrument
highlights the weakness of using near real time products from research instruments for
operational services.

Eskes et al. (2002) estimate that useful ozone forecasts can be obtained up to about
one week for the extra-tropics with the KNMI system. In the tropics, the forecast skill
is less good (useful forecasts out to ~2 days) due, mainly, to the lack of tropospheric
chemistry in the KNMI CTM. Two examples illustrate the skill of the KNMI system. The
first concerns low ozone events (also known as ozone mini-holes) that are observed
during winter over the Atlantic and Northern Europe, and last for 1-2 days (Orsolini
and Nikulin, 2006). These events are due to dynamical transport of low ozone from the
subtropics to the extra-tropics. For these events, five-day ozone forecasts are found to
be qualitatively good; three-day forecasts are found to be quantitatively equivalent to
the analyses, the latter being close to the observations (GOME total column ozone).
The second example concerns the Antarctic polar vortex split of September 2002. Dur-
ing this unprecedented event, associated with a stratospheric warming (Eskes et al.,
2005), the vortex split into two parts before decaying. As a result of this, the ozone
hole also split into two parts. Figure 7 shows the ozone total column on 26 September
over Antarctica calculated by the KNMI analysis and 5-day, 7-day and 9-day forecasts
of the total ozone column. The analysis for this day shows the ozone hole split with two
distinct regions of low total column ozone (values less than 200 DU). For this event,
forecasts out to seven days perform well, and differences from the analyses are small.
The nine-day forecast captures elements of the ozone hole split.

These two cases highlight the maturity of the KNMI ozone forecast service. However,
the high accuracy of the forecasts would not have been possible without high quality
dynamical fields, in this case from ECMWEF. The success of the KNMI forecasts shows
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that the underlying dynamical processes were well captured by the ECMWF NWP
system (Simmons et al., 2005).

7 Future directions

Stratospheric constituent data assimilation has developed enormously during the last
15 years to a position where incorporation of constituents in NWP (especially ozone)
is routine. Two approaches have been used: GCM-based NWP models and chemical
models, either CTMs or photochemical box models. Recently, the NWP and CTM ap-
proaches have started to be combined in coupled NWP/CTM data assimilation, e.g., in
collaboration between Met Service Canada and BIRA-IASB; early results are promis-
ing.

These approaches to stratospheric constituent data assimilation have benefited from
collaboration between operational and research institutions to identify shortcomings in
the different assimilation approaches, for example within the EU-funded ASSET project
(Lahoz et al., 2007) and the ASSET ozone intercomparison project (Geer et al., 2006a).
The importance of maintaining and developing these collaborations has been noted
(McLaughlin et al., 2005).

Key drivers in constituent data assimilation for the future are likely to include the
need to monitor the environment (e.g. stratospheric ozone; tropospheric pollution); the
need to comply with international treaties such as the Montreal protocol; and the need
to comply with environmental legislation concerning, e.g., air quality. This is illustrated
by the PROMOTE project (http://www.gse-promote.org), one of the GMES service el-
ements set up by ESA. PROMOTE is a user-oriented project, which aims to use the
assimilation of constituent data to provide services on global ozone, greenhouse gases
and air quality.

Another area of increasing importance will be the relationship between chemistry
and climate. While this is naturally mainly the focus of coupled chemistry-climate GCMs
(see Eyring et al., 2006, and references therein), it does increase the importance of the
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compilation of assimilated constituent data for the study of recent climate variations
and evaluation of climate simulations; climate/chemistry interactions will thus be one
of the leading drivers for the development of coupled chemistry/dynamics assimilation
systems. The inclusion of ozone in the recent ERA-40 re-analysis (Dethof and Holm,
2004) illustrates the importance of these considerations. The EC and ESA initiative on
GMES illustrates the perceived importance on more general environmental monitoring.
The ECMWF-led GEMS project (Hollingsworth, 2005), part of GMES, illustrates the
widening scope of data assimilation to include not just atmospheric dynamics but a
widening range of atmospheric constituents.

In developing further constituent data assimilation for the stratosphere, choices will
have to be made concerning issues such as the type of model, the complexity of the
chemistry component in the model and the assimilation set-up. These choices will
depend on the application (Lahoz, 2006). Challenges concerning issues such as bias,
what datasets to assimilate, the need for ancillary datasets (e.g. aerosol information),
representation of the model physics and chemistry, the suitability of the NWP approach,
and the nature and evolution of the Global Observing System will have to be tackled.
Insights gained in stratospheric constituent data assimilation will also help inform the
challenges in tropospheric constituent data assimilation (Eskes, 2006).
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Appendix A

Definition of acronyms

ADEOS:
ASSET:
ATMOS:
ATOVS:
BASCOE:
BIRA-IASB:

BLUE:
CCMVal:
CLAES:
CRISTA:
CTM:
DA:
DARC:
DLR:
DU:

EC:
ECMWE:
EKF:
EnKF:
EOS:
EOS MLS:
ERA:
ESA:
FGAT:
FTIR:

ADvanced Earth Observing Satellite
ASSimilation of Envisat daTa
Atmospheric Trace MOlecule Spectroscopy
Advanced TOVS
Belgian Assimilation System for Chemical Observations from Envisat
Belgisch Instituut voor Ruimte
Aeronomie — Institut d’Aéronomie Spatiale de Belgique
Best Linear Unbiased Estimate
Chemistry-Climate Model Validation
Cryogenic Limb Array Etalon Spectrometer
CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere
Chemistry-Transport Model
Data Assimilation
Data Assimilation Research Centre, UK
Deutsches zentrum far Luft-und Raumfahrt
Dobson Units
European Commission
European Centre for Medium-range Weather Forecasts
Extended KF
Ensemble KF
Earth Observing System
EOS Microwave Limb Sounder
ECMWF Re-Analysis
European Space Agency
First Guess at the Appropriate Time
Fourier Transform InfraRed
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GCM:

GEOS:
GEMS:
GMAO:
GMES:

GOME and GOME-2:

GOMOS:
HALOE:
HIRS:
IASI:
IGACO:
ILAS:
KF:
KNMI:
LIMS:
MIPAS:
MLS:
MSG:
NASA:
NCAR:
NCEP:
NMC:
NOAA:
NWP:
Ol:
OmA:
OmF:
OMI:
OSSE:
POAM:

General Circulation Model

Goddard Earth Observing System

Global Earth system Monitoring using Space and in-situ data
Global Modeling Assimilation Office

Global Monitoring for Environment and Security

Global Ozone Monitoring Experiment

Global Ozone Monitoring by Occultation of Stars
HALogen Occultation Experiment

High resolution Infrared Radiation Sounder

Infrared Atmospheric Sounding Interferometer
Integrated Global Atmospheric Chemistry Observations
Improved Limb Atmospheric Spectrometer

Kalman Filter

Koninklijk Nederlaands Meteorologisch Instituut

Limb Infrared Monitor of the Stratosphere

Michelson Interferometer for Passive Atmospheric Sounding
Microwave Limb Sounder

Meteosat Second Generation

National Aeronautics and Space Administration
National Center for Atmospheric Research

National Centers for Environmental Prediction

National Meteorological Center

National Oceanic and Atmospheric Administration
Numerical Weather Prediction

Optimal Interpolation

Observation minus Analysis

Observation minus Forecast

Ozone Monitoring Instrument

Observing System Simulation Experiment

Polar Ozone Se)angsAerosol Measurement
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PROMOTE:
PSAS:

PSC:

RH:

RT:

SBUV/2:
SCIAMACHY:

SEVIRI:
SMR:
SPARC:
SSM/I:
TOMS:
TOVS:
UARS:
UKMO:
UTLS:
uv:
VAR:
WMO-GAW:
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Table 1. Summary of assimilated stratospheric chemistry satellite observations, 1978—present.

ACPD
7, 9561-9633, 2007

Satellite/Instrument

Availability

Constituents

TOMS (several satellites) (McPeters
et al., 1998)

SBUV/2 (several satellites) (Miller et
al., 2002)

HIRS channel 9 (several satellites)
(Joiner et al., 1998)

LIMS (Gille and Russell, 1984)
UARS CLAES (Roche et al., 1993)
UARS MLS (Waters, 1998)

UARS HALOE (Russell et al., 1993)
ATMOS (four space shuttle mis-
sions) (Gunson et al., 1996)

CRISTA (two space shuttle mis-
sions) (Offermann et al., 1999)
ERS-2 GOME (Burrows et al., 1999)
ODIN SMR (Murtagh et al., 2002)
Envisat MIPAS (Fischer et al., 2000)

Envisat SCIAMACHY (Bovensmann

et al., 1999)

Envisat GOMOS (Bertaux et al.,
2000)

ADEOS ILAS-II (Nakajima et al.,
2006)

EOS Aura MLS (Waters et al., 2006)
EOS Aura OMI (Levelt et al., 2006)

1978-present

1978—present

1978-present

1978-1979

1991-1993

1991-1997

1991-2005

April 1985; March 1992; April
1993; November 1994
November 1994; August 1997
1995—present

2001—present

2002—present

2002—present

2002—present

2002-2003

2004—present
2004—present

Total column ozone
Ozone layers
Radiances sensitive to ozone

Ozone, H,0, HNO; and NO, profiles
CH,, NO, profiles

Ozone profiles

Ozone, N,O, CH,, H,O, HCI profiles
03, NO, NO,, N,O5 HNO;g,
HO,NO,, HCN, CIONO,, HCI, H,0,
CO, CO,, CH,4, and N,O profiles
Ozone, CH,, N,O, CFC-11, HNO;,
CIONO, and N, O profiles

Total column ozone and NO,, ozone
profiles

Ozone and N, O profiles

Ozone, H,0, NO,, HNO3, N,O, and
CH,profiles; radiances sensitive to
humidity and ozone

Total column ozone, ozone profiles

Ozone, NO,, NO; profiles
Ozone profiles

Ozone profiles
Total column ozone
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Table 2. Summary of selected NWP- and GCM-based data assimilation experiments.

ACPD
7, 9561-9633, 2007

References

Method

Assimilated constituent dataset

Chemistry

Caplan et al., 1997; Derber et
al., 1998; Derber and Wu, 1998;
NCEP; this system became op-
erational in 1997
Struthers et al.,
DARC/Met Office
Jackson and Saunders, 2002;
Jackson, 2004, 2007; Met Of-
fice

2002;

Dethof, 2003; ECMWEF; this
system became operational in
2002

Bormann et al., 2005, 2007;
Bormann and Healy, 2006;
Bormann and Thépaut, 2007;
ECMWF
Dethof
ECMWF
Polavarapu et al., 2005a; Met
Service Canada

and Holm, 2004;

Lahoz et al.,, 2005; DARC/Met
Office

Lahoz et al.,, 2007; DARC/Met
Office

Geer et al.,, 2006a, b, 2007;
DARC/Met Office

Spectral statistical inter-
polation

Analysis correction

3D-Var

4D-Var

4D-Var

3D-Var

3D-Var

3D-Var
3D-Var

3D-Var

Ozone a prognostic variable
to improve assimilation of radi-
ances

Ozone profiles (UARS MLS); to-
tal column ozone (GOME)
Ozone layers (SBUV/2);
SBUV/2 and ozone profiles
(EOS MLS) in Jackson, 2007

Ozone profiles (MIPAS); ozone
layers (SBUV/2); total column
ozone (GOME)

MIPAS limb infrared radiances
sensitive to ozone and humidity

Ozone layers (SBUV/2); total
column ozone (TOMS)
Simulated ozone tested within
the assimilation system

Simulated  ozone
(SWIFT, IASI, GOME-2)
Ozone and humidity profiles
(MIPAS)

Ozone profiles (MIPAS); HIRS 9
(in Geer et al., 2006b)

profiles

None

Ozone parametrization; no cold
tracer

Ozone parametrization with
cold tracer (no cold tracer in
Jackson and Saunders, 2002;
Jackson, 2007)

Ozone parametrization with het-
erogeneous chemistry term

Ozone parametrization with het-
erogeneous chemistry term

Ozone parametrization with het-
erogeneous chemistry term
Comprehensive  stratospheric
chemistry; gas-phase and
heterogeneous reactions
Ozone parametrization; no cold
tracer

Ozone parametrization with
cold tracer

Ozone parametrization with
cold tracer (no cold tracer in
Geer et al., 2006b)
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Table 3. Summary of selected chemical model data assimilation experiments.

ACPD
7, 9561-9633, 2007

References Method Assimilated constituent  Chemistry
dataset

Austin, 1992 Nudging Ozone, H,0, HNO3 and NO, CTM: extended family ap-
profiles (LIMS) proach

Fisher and Lary, 1995 4D-Var Ozone (UARS MLS) and NO, Trajectory box model: re-

Levelt et al., 1998

Khattatov et al., 1999

Khattatov et al., 2000

Ménard et al., 2000; Ménard
and Chang, 2000

Errera and Fonteyn, 2001;
BIRA-IASB system was oper-
ational 2002—-2004

Fonteyn et al., 2001
Chipperfield et al. (2002)

Kill et al., 2002

Sequential statistical in-
terpolation

4D-Var and Kalman fil-
ter

Kalman filter

Kalman filter

4D-Var

4D-Var
Kalman filter

Nudging

(UARS CLAES) profiles; syn-
thetic data
Ozone profiles (UARS MLS)

Ozone, HNO,, NO, CIONO,,

N,O and CH, (UARS
CLAES); CIO and H,O
(UARS MLS)

Ozone profiles (UARS MLS)

CH, profiles (UARS CLAES
and HALOE)

Ozone, CH,, N,O, CFC-11,
HNO;, CIONO, and N,Op
profiles (CRISTA)

Aerosol (SAGE-II)

O3, CH,4, H,0, and HCI pro-
files (UARS HALOE)

Ozone, CH,, N,O, HNOj,
CIONO,, NO,and N,Og pro-
files (CRISTA)

duced stratospheric chem-
istry

CTM: extensive photochem-
ical scheme; heterogeneous
chemistry

Photochemical box model:
gas-phase chemistry

CTM: extensive set of pho-
tochemical reactions; hetero-
geneous processes
CTM: no chemistry

CTM:
scheme

detailed  chemical

Simple aerosol model

CTM: detailed gas-phase
stratospheric chemistry; CH,
oxidation scheme; long-lived
tracers

CTM: detailed chemi-
cal scheme and aerosol
parametrization
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Table 3. Continued.

Eskes et al., 2002, 2003,
2005 ; Segers et al., 2005 ;
KNMI system became opera-
tional in 2000

Lary et al., 2003

Marchand et al., 2003, 2004

Stajner et al., 2001, 2004,
2006; Stajner and Wargan,
2004; Wargan et al., 2005;
GMAO system became oper-
ational in 1999

El Amraoui et al., 2004

Massart et al., 2004

Baier et al., 2005

Coy et al.,, 2007

Rosevall et al., 2007

Kalman filter

Kalman filter

4D-Var on a box model

PSAS

Sequential statistical in-
terpolation

3D-FGAT

Ol

PSAS

Kalman filter

Total column ozone (GOME) ;
ozone profiles (GOME) in
Segers et al.

Ozone, NO, NO,, N,Os,
HNO;, HO,NO,, HCN,
CIONO,, HCI, H,0, CO,

CO,, CH,, and N,O profiles
(ATMOS)
Ozone, NO,, NOj profiles
(GOMOS)

Total column ozone (TOMS) ;
ozone layers (SBUV/2);
ozone profiles (POAM-III).
A prototype for assimilating
SBUV/2 radiances has been
tested (Mdiller et al., 2004)
Ozone, N,O profiles (ODIN
SMR)

Ozone profiles (GOME)
Ozone, H,0, NO,, CH,, N,O
and HCI profiles (MIPAS)

Ozone layers (SBUV/2)

Ozone  profiles
ODIN/SMR)

(MIPAS,

CTM: ozone parametrization;
cold tracer

Stacked photochemical box
models: comprehensive
chemistry

Photochemical box model :
gas-phase chemistry; hetere-
0genous processes

CTM: ozone parametrization;
no chemistry (Stajner et al.,
2001)

CTM: comprehensive gas-
phase chemistry and hetero-
geneous reactions

CTM: detailed photochem-
istry

CTM: detailed gas phase
chemistry and hetero-
geneous  processes  on
sulphuric acid aerosols

CTM  data  assimilation
scheme (Stajner et al,
2006) coupled to a GCM:
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Fig. 1. Total column ozone on 26 September 2002 (Dobson Units, DU) from (a) the 12:00 UT
troposphere-stratosphere Met Office analysis with the column ozone below 200 hPa replaced
by an ozone climatology; (b) TOMS; (c) GOME. Based on Geer et al. (2006b). © Royal Mete-

orological Society.
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Fig. 2. Evaluation of analyses using histograms of OmF differences (normalized by the ob-
servation error) averaged for the stratosphere, the globe and August 2003 for six stratospheric
constituents: Oj (top left), H,O (top right), CH, (middle left), N,O (middle right), HNO; (bot-
tom left) and NO, (bottom right). The constituent observations are from ESA MIPAS off-line
retrievals. The frequency of the histograms is normalized by the observations, so that the sum
of the histogram values is 1. The black line is a Gaussian fit to the histograms; the red line is
a Gaussian fit from a model run without assimilation. The results support the assumption of
Gaussian errors in the observations and the forecast, and show the analyses are closer to the
observations than simulations from the model run without assimilation. The experiments were
performed at BIRA-IASB (http://www.bascoe.oma.be).
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Fig. 3. Evaluation of ozone analyses using independent data at four locations: (a) Ny Alesund
(78.9°N, 11.9°E) on 27 April 1997; (b) Payerne (46.8° N, 7.0° E) on 25 April 1997; (c) Lauder
(45.05° S, 169.7°E) on 16 April 1997; and (d) South Pole (90°S) on 18 April 1997; all plots
at 12:00 UT. The analyses (stars) are compared against ozonesonde data (line) that have not
been used in the assimilation. The ozone data used to initialize the assimilation are shown as
diamonds. The results show reasonable agreement between the analyses and the ozoneson-
des, and the lack of influence of the initial ozone conditions after the spin-up period. Units are
mPa. With permission from Struthers et al. (2002).
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Fig. 4. GOMOS NO; measurement and analysed NO5 averaged over isentropic levels; only
data where the GOMOS NO, error is below 30% are included. The isentropic levels included
in the average are 735, 900, 990, 1100, 1210, 1350 and 1510K. The standard deviations of
the isentropic means of GOMOS NO; and of mean analysed NOj are indicated by vertical and
horizontal lines, respectively. With permission from Marchand et al. (2004).
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Fig. 5. Monthly zonal mean specific humidity analyses for September 2003 for BASCOE (upper
plot) and ECMWF (lower plot). MIPAS water vapour profiles have been assimilated in both
cases. Blue denotes relatively low specific humidity values; red denotes relatively high specific
humidity values. Units: parts per million by vgléjg;e, ppmv. Based on Lahoz et al. (2007). EG
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Fig. 6. Top: Mean of analysis minus HALOE differences (in percent), normalized by climatology,
for the period 18 August—30 November 2003. Bottom: Colour key for top part of figure. The
numbers in brackets indicate the HALOE/analysis coincidences within each latitude bin. Based

on Geer et al. (2006a).
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Fig. 7. Total column ozone on 26 September 2002, provided by the KNMI operational ozone
assimilation system. From left to right: 9-day, 7-day, 5-day forecasts, and the corresponding
analysis. With permission from Eskes et al. (2005).
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